Determining the ice-binding planes of antifreeze proteins by fluorescence-based ice plane affinity.
نویسندگان
چکیده
Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms.
منابع مشابه
Direct visualization of spruce budworm antifreeze protein interacting with ice crystals: basal plane affinity confers hyperactivity.
Antifreeze proteins (AFPs) protect certain organisms from freezing by adhering to ice crystals, thereby preventing their growth. All AFPs depress the nonequilibrium freezing temperature below the melting point; however AFPs from overwintering insects, such as the spruce budworm (sbw) are 10-100 times more effective than most fish AFPs. It has been proposed that the exceptional activity of these...
متن کاملSource of the Ice-Binding Specificity of Antifreeze Protein Type I
Antifreeze proteins (AFPs) are a group of structurally very diverse proteins with the unique capability of binding to the surface of seed ice crystals and inhibiting ice crystal growth. The AFPs bind with high affinity to specific planes of the ice crystal. Previously, this affinity of AFPs has been ascribed to the formation of multiple hydrogen bonds across the protein-ice interface, but more ...
متن کاملIce-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics
Ice-binding proteins that aid the survival of freeze-avoiding, cold-adapted organisms by inhibiting the growth of endogenous ice crystals are called antifreeze proteins (AFPs). The binding of AFPs to ice causes a separation between the melting point and the freezing point of the ice crystal (thermal hysteresis, TH). TH produced by hyperactive AFPs is an order of magnitude higher than that produ...
متن کاملRefined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction.
BACKGROUND Antifreeze proteins are found in certain fish inhabiting polar sea water. These proteins depress the freezing points of blood and body fluids below that of the surrounding sea water by binding to and inhibiting the growth of seed ice crystals. The proteins are believed to bind irreversibly to growing ice crystals in such a way as to change the curvature of the ice-water interface, le...
متن کاملBinding of an oligopeptide to a specific plane of ice.
The alpha-helical antifreeze protein (AFP) from winter flounder inhibits ice growth by binding to a specific set of pyramidal surface planes that are not otherwise macroscopically expressed. The 37-residue AFP contains three 11-amino acid repeats that make a stereo-specific fit to the ice lattice along the <01-12> direction of the (20-21) and equivalent binding planes. When the AFP was shortene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of visualized experiments : JoVE
دوره 83 شماره
صفحات -
تاریخ انتشار 2014